4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
新闻详情
...Transistors and Its Suppression by Using Low-k Fluoropol
来自 : www.x-mol.com/paper/322... 发布时间:2021-03-25
Here, we report static and dynamic water motion-induced instability in indium–gallium–zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.
(TFTs) and its effective suppression with the use of a simple, solution-processed low- k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer...Static and Dynamic Water Motion-Induced Instability in Oxide Thin-Film Transistors and Its Suppression by Using Low-k Fluoropolymer Passivation; Seungbeom Choi,Jeong-Wan Jo,Jaeyoung Kim,Seungho Song,Jaekyun Kim,Sung Kyu Park,Yong-Hoon Kim; ACS Appl. Mater. Interfaces; ACS Applied Materials & Interfaces; X-MOLHere, we report static and dynamic water motion-induced instability in indium–gallium–zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adStatic and Dynamic Water Motion

本文链接: http://fluoropol.immuno-online.com/view-739261.html

发布于 : 2021-03-25 阅读(0)